food_detection/svm_nb_funcs.py
2021-02-11 13:34:23 -05:00

352 lines
12 KiB
Python

from sklearn import svm
import csv
from sklearn.utils import shuffle
from sklearn.metrics import classification_report
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LogisticRegression
import numpy as np
import matplotlib.pyplot as plt
food_file_path, non_food_file_path = 'food.csv', 'no_food.csv'
# food_file_path2, non_food_file_path2 = 'food2.csv', 'no_food2.csv'
food_raw_data, non_food_raw_data = [], []
# food_raw_data2, non_food_raw_data2 = [], []
train_raw_food, train_raw_non_food = [], []
test_raw_food, test_raw_non_food = [], []
train_vector_x, train_vector_y, train_vector_num = [], [], []
test_vector_x, test_vector_y = [], []
useful_tag_list, useful_dict = [], {}
correlation_dict = {}
p_food = 0
def get_raw_data():
global food_raw_data, non_food_raw_data
with open(food_file_path) as f:
csv_reader = csv.reader(f)
for row in csv_reader:
food_raw_data.append(row)
with open(non_food_file_path) as f:
csv_reader = csv.reader(f)
for row in csv_reader:
non_food_raw_data.append(row)
# with open(food_file_path2) as f:
# csv_reader = csv.reader(f)
# for row in csv_reader:
# food_raw_data2.append(row)
# with open(non_food_file_path2) as f:
# csv_reader = csv.reader(f)
# for row in csv_reader:
# non_food_raw_data2.append(row)
def shuffle_raw_data():
global food_raw_data, non_food_raw_data
# non_food_raw_data = non_food_raw_data[:15000]
# non_food_raw_data = non_food_raw_data[:len(food_raw_data)]
food_raw_data = shuffle(food_raw_data)
non_food_raw_data = shuffle(non_food_raw_data)
# non_food_raw_data = non_food_raw_data[:15000]
non_food_raw_data = non_food_raw_data[:len(food_raw_data)]
# non_food_raw_data = non_food_raw_data[00000]
def div_train_test_raw_data(ratio=0.75):
global food_raw_data, non_food_raw_data, train_raw_food, \
train_raw_non_food, test_raw_food, test_raw_non_food, \
food_raw_data2, non_food_raw_data2
# remove some non_food_raw_data
# non_food_raw_data = non_food_raw_data[:10000]
train_food_len = int(len(food_raw_data) * ratio)
train_non_food_len = int(len(non_food_raw_data) * ratio)
train_raw_food = food_raw_data[0:train_food_len]
train_raw_non_food = non_food_raw_data[0:train_non_food_len]
test_raw_food = food_raw_data[train_food_len:]
test_raw_non_food = non_food_raw_data[train_non_food_len:]
# train_raw_food = food_raw_data
# test_raw_food = food_raw_data2
# train_raw_non_food = non_food_raw_data
# test_raw_non_food = non_food_raw_data2
def save_raw_data_train_test():
global food_raw_data, non_food_raw_data, train_raw_food, \
train_raw_non_food, test_raw_food, test_raw_non_food
with open('train_food.csv', 'w') as f:
write = csv.writer(f)
write.writerows(train_raw_food)
with open('train_non_food.csv', 'w') as f:
write = csv.writer(f)
write.writerows(train_raw_non_food )
with open('test_food.csv', 'w') as f:
write = csv.writer(f)
write.writerows(test_raw_food )
with open('test_non_food.csv', 'w') as f:
write = csv.writer(f)
write.writerows(test_raw_non_food)
for i in train_raw_food:
i = i[1:]
for i in train_raw_non_food:
i = i[1:]
for i in test_raw_food:
i = i[1:]
for i in test_raw_non_food:
i = i[1:]
print(len(train_raw_food))
def count_dict(raw_data, threshold=0.5):
counter_dict = {} # only collect from train data
for i in raw_data:
for j in range(0, len(i) - 1, 2):
tmp = str(i[j]).strip()
if float(i[j + 1]) > threshold:
if tmp not in counter_dict:
counter_dict[tmp] = 1
else:
counter_dict[tmp] += 1
else:
# if tmp not in counter_dict:
# counter_dict[tmp] = 0
pass
return counter_dict
def get_use_tag(use_all=False, threshold=0.5):
global useful_tag_list, food_raw_data, non_food_raw_data, useful_dict
useful_tag_list, useful_dict = [], {}
food_tag_dict = count_dict(train_raw_food)
non_food_tag_dict = count_dict(train_raw_non_food)
if use_all:
for i in non_food_tag_dict.keys():
if i not in food_tag_dict.keys():
food_tag_dict[i] = non_food_tag_dict[i]
else:
food_tag_dict[i] += non_food_tag_dict[i]
# food_tag_dict.update(non_food_tag_dict)
appear_times = 0
appear_list = []
for i in food_tag_dict.keys():
appear_times += food_tag_dict[i]
appear_list.append(food_tag_dict[i])
appear_list.sort(reverse=True)
useful_bound = int(appear_times * threshold)
bound = 0
pre_sum = 0
for i in range(len(appear_list)):
pre_sum += appear_list[i]
if pre_sum > useful_bound:
bound = appear_list[i]
break
for i in food_tag_dict.keys():
if food_tag_dict[i] > bound:
useful_tag_list.append(i)
counter = 0
for i in useful_tag_list:
useful_dict[i] = counter
counter += 1
def get_correlation():
global train_raw_food, correlation_dict
food_tag_dict = count_dict(train_raw_food)
merged_dict = count_dict(train_raw_non_food)
for i in food_tag_dict.keys():
if i not in merged_dict.keys():
merged_dict[i] = food_tag_dict[i]
else:
merged_dict[i] += food_tag_dict[i]
for i in food_tag_dict.keys():
if i not in correlation_dict.keys():
correlation_dict[i] = food_tag_dict[i] / len(food_raw_data)
# correlation_dict[i] = food_tag_dict[i] / merged_dict[i]
else:
print("error in get correlation function")
def construct_train_test_set():
global train_raw_food, train_raw_non_food, test_raw_food, \
test_raw_non_food, train_vector_x, train_vector_y, \
test_vector_x, test_vector_y, train_vector_num
train_vector_x, train_vector_y, train_vector_num = [], [], []
test_vector_x, test_vector_y = [], []
vector_x = []
vector_y = []
for i in train_raw_food:
tmp = [0 for i in range(len(useful_tag_list))]
for j in range(0, len(i) - 1, 2):
if i[j] in useful_dict.keys():
tmp[useful_dict[i[j]]] = float(
i[j + 1]) * correlation_dict[i[j]] + p_food * (1 - float(i[j + 1]))
else:
# TODO: should be changed to random probability
pass
vector_x.append(tmp)
vector_y.append("food")
train_vector_num.append(1)
for i in train_raw_non_food:
tmp = [0 for i in range(len(useful_tag_list))]
for j in range(0, len(i) - 1, 2):
if i[j] in useful_dict.keys():
tmp[useful_dict[i[j]]] = float(
i[j + 1]) * correlation_dict[i[j]] + p_food * (1 - float(i[j + 1]))
else:
# TODO: should be changed to random probability
pass
vector_x.append(tmp)
vector_y.append("no food")
train_vector_num.append(-1)
train_vector_x, train_vector_y = vector_x, vector_y
vector_x, vector_y = [], []
for i in test_raw_food:
tmp = [0 for i in range(len(useful_tag_list))]
for j in range(0, len(i) - 1, 2):
if i[j] in useful_dict.keys():
tmp[useful_dict[i[j]]] = float(
i[j + 1]) * correlation_dict[i[j]] + p_food * (1 - float(i[j + 1]))
else:
# TODO: should be changed to random probability
pass
vector_x.append(tmp)
vector_y.append("food")
for i in test_raw_non_food:
tmp = [0 for i in range(len(useful_tag_list))]
for j in range(0, len(i) - 1, 2):
if i[j] in useful_dict.keys():
tmp[useful_dict[i[j]]] = float(
i[j + 1]) * correlation_dict[i[j]] + p_food * (1 - float(i[j + 1]))
else:
# TODO: should be changed to random probability
pass
vector_x.append(tmp)
vector_y.append("no food")
test_vector_x, test_vector_y = vector_x, vector_y
def confision_matrix(ground_true, predict, print_result=False):
TP, FP, FN, TN = 0, 0, 0, 0
for i in range(len(ground_true)):
if ground_true[i] == "food" and predict[i] == "food":
TP += 1
elif ground_true[i] == "no food" and predict[i] == "food":
FP += 1
elif ground_true[i] == "food" and predict[i] == "no food":
FN += 1
elif ground_true[i] == "no food" and predict[i] == "no food":
TN += 1
TPR = TP / (TP + FN)
FPR = FP / (FP + TN)
if print_result:
print("TP: ", TP, "FN: ", FN, "TN: ", TN, "FP :", FP)
# print("Sensitivity = ", TP/(TP+FN), end=" ")
# print("Specificity = ", TN/(TN+FP))
# print("Precision = ", TP/(TP+FP), end=" ")
# print("Accuracy = ", (TP + TN)/(TP+TN+FN+FP))
return TPR, FPR
def clarifai_result():
global test_raw_food, test_raw_non_food
TPR_list = []
FPR_list = []
for k in range(10):
TP, FP, FN, TN = 0, 0, 0, 0
ratio = k / 10
# print(ratio)
for i in test_raw_food:
have = False
for j in range(len(i)):
if i[j] == "food" and float(i[j + 1]) > ratio:
have = True
if not have:
FN += 1
else:
TP += 1
for i in test_raw_non_food:
have = False
for j in range(len(i)):
if i[j] == "food" and float(i[j + 1]) > ratio:
have = True
if not have:
TN += 1
else:
FP += 1
TPR = TP / (TP + FN)
FPR = FP / (FP + TN)
TPR_list.append(TPR)
FPR_list.append(FPR)
if k == 9 or k == 8 or k == 7 or k ==6:
# if k == 7 or k == 6 or k == 5 or k == 4:
plt.scatter([FPR], [TPR], marker='o', c='green')
# print("TRP :", TPR)
# print("FPR :", FPR)
return TPR_list, FPR_list
#
# print("clarify result**********")
# print("TP: ", TP, "FN: ", FN, "TN: ", TN, "FP :", FP)
# print("Sensitivity = ", TP / (TP + FN), end=" ")
# print("Specificity = ", TN / (TN + FP))
# print("Precision = ", TP / (TP + FP), end=" ")
# print("Accuracy = ", (TP + TN) / (TP + TN + FN + FP))
# print("burden = ", (TP + FP) / (TP +TN+FN+FP))
# plt.scatter([1 - 0.789866667, 1 - 0.684, 1 - 0.55786, 1-0.4512], [0.584493042, 0.666003976, 0.753479125, 0.833664679], marker='o', c='green')
def get_p_food_before_balance():
# food_num_ori = 0
# with open("#food_ori.csv") as f:
# csv_reader = csv.reader(f)
# for row in csv_reader:
# food_num_ori += 1
# no_food_num_ori = 0
# with open("#no food_ori.csv") as f:
# csv_reader = csv.reader(f)
# for row in csv_reader:
# no_food_num_ori += 1
# p_food = food_num_ori / no_food_num_ori
# return p_food
# p_food = len(train_raw_food) / (len(train_raw_food) + len(train_raw_non_food))
# return p_food
pass
def init(use_all=True):
global p_food, train_raw_food, train_raw_non_food
get_raw_data()
shuffle_raw_data()
div_train_test_raw_data(0.75)
save_raw_data_train_test()
clarifai_result()
p_food = len(train_raw_food) / (len(train_raw_food) + len(train_raw_non_food))
get_correlation()
get_use_tag(use_all)
construct_train_test_set()