{ "cells": [ { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import csv\n", "from sklearn.utils import shuffle\n", "food_raw_data, non_food_raw_data, food_rectify = [], [], []\n", "food_data, non_food_data = [], []\n", "\n", "with open(\"food_rectify.csv\") as f:\n", " reader = csv.reader(f)\n", " for row in reader:\n", " food_rectify.append(row)\n", "\n", "with open(\"food.csv\") as f:\n", " reader = csv.reader(f)\n", " for row in reader:\n", " food_raw_data.append(row)\n", " \n", "with open(\"no_food.csv\") as f:\n", " reader = csv.reader(f)\n", " for row in reader:\n", " non_food_raw_data.append(row)\n", " \n", "food_data = food_raw_data\n", "\n", "for i in non_food_raw_data:\n", " if i[0] not in food_rectify:\n", " non_food_data.append(i)\n", " else:\n", " food_data.append(i)\n", "\n", "food_data = shuffle(food_data)\n", "non_food_data = shuffle(non_food_data)\n", "\n", "ratio = 0.75 \n", "train_food_len = int(len(food_data) * ratio)\n", "train_non_food_len = train_food_len\n", "\n", "test_food_len = len(food_data) - train_food_len\n", "test_non_food_len = int(len(non_food_data) * (1 - ratio))\n", "\n", "\n", "train_food = food_data[0:train_food_len]\n", "test_food = food_data[train_food_len:train_food_len + test_food_len]\n", "\n", "train_non_food = non_food_data[0:train_non_food_len]\n", "test_non_food = non_food_data[train_non_food_len:train_non_food_len + test_non_food_len]\n", "\n", "with open('train_food.csv', 'w') as f:\n", " write = csv.writer(f)\n", " write.writerows(train_food)\n", " \n", "with open('train_non_food.csv', 'w') as f:\n", " write = csv.writer(f)\n", " write.writerows(train_non_food )\n", "\n", "with open('test_food.csv', 'w') as f:\n", " write = csv.writer(f)\n", " write.writerows(test_food )\n", "with open('test_non_food.csv', 'w') as f:\n", " write = csv.writer(f)\n", " write.writerows(test_non_food)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "a = [i for i in range(10)]\n", "print(a)\n", "print(a[0:4])\n", "print(a[4:7])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "non_food_raw_data" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 4 }