This commit is contained in:
Guangzong 2021-02-11 13:34:23 -05:00
commit fa7961e00d
6 changed files with 1440 additions and 0 deletions

2
.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
/misc/*
*.csv

215
extract2.py Executable file
View File

@ -0,0 +1,215 @@
import csv
import os
import numpy as np
import matplotlib.pyplot as plt
folder_list = [
'PHASE3_HH01_T2_EButtom-402/eButton_Data/Camera/ID0402_Nov.27/7',
'PHASE3_HH01_T2_EButtom-402/eButton_Data/Camera/ID0402_Nov.27/8',
'PHASE3_HH01_T2_EButtom-402/eButton_Data/Camera/ID0402_Nov.27/9',
'PHASE3_HH01_T2_EButtom-402/eButton_Data/Camera/ID0402_Nov.27/10',
'PHASE3_HH01_T2_EButtom-402/eButton_Data/Camera/ID0402_Nov.27/11',
'PHASE3_HH01_T2_EButtom-402/eButton_Data/Camera/ID0402_Nov.27/12',
'PHASE3_HH01_T2_EButtom-402/eButton_Data/Camera/ID0402_Nov.27/13',
'PHASE3_HH01_T2_EButtom-402/eButton_Data/Camera/ID0402_Nov.27/14',
'PHASE3_HH01_T2_EButtom-402/eButton_Data/Camera/ID0402_Nov.27/15',
'PHASE3_HH01_T2_EButtom-402/eButton_Data/Camera/ID0402_Nov.27/18',
'PHASE3_HH01_T2_EButtom_411-Mother/eButton_Data/Camera/ID0411_Nov.27/8',
'PHASE3_HH01_T2_EButtom_411-Mother/eButton_Data/Camera/ID0411_Nov.27/9',
'PHASE3_HH01_T2_EButtom_411-Mother/eButton_Data/Camera/ID0411_Nov.27/10',
'PHASE3_HH01_T2_EButtom_411-Mother/eButton_Data/Camera/ID0411_Nov.27/11',
'PHASE3_HH01_T2_EButtom_411-Mother/eButton_Data/Camera/ID0411_Nov.27/12',
'PHASE3_HH01_T2_EButtom_411-Mother/eButton_Data/Camera/ID0411_Nov.27/13',
'PHASE3_HH01_T2_EButtom_411-Mother/eButton_Data/Camera/ID0411_Nov.27/14',
'PHASE3_HH01_T2_EButtom_411-Mother/eButton_Data/Camera/ID0411_Nov.27/15',
'PHASE3_HH01_T2_EButtom_411-Mother/eButton_Data/Camera/ID0411_Nov.27/16',
'PHASE3_HH01_T2_EButtom_411-Mother/eButton_Data/Camera/ID0411_Nov.27/17',
'PHASE3_HH02_T2_eButton-402_Mother/eButton_Data/Camera/ID0402_Nov.28/8',
'PHASE3_HH02_T2_eButton-402_Mother/eButton_Data/Camera/ID0402_Nov.28/9',
'PHASE3_HH02_T2_eButton-402_Mother/eButton_Data/Camera/ID0402_Nov.28/10',
'PHASE3_HH02_T2_eButton-402_Mother/eButton_Data/Camera/ID0402_Nov.28/12',
'PHASE3_HH02_T2_eButton-402_Mother/eButton_Data/Camera/ID0402_Nov.28/13',
'PHASE3_HH02_T2_eButton-402_Mother/eButton_Data/Camera/ID0402_Nov.28/14',
'PHASE3_HH02_T2_eButton-402_Mother/eButton_Data/Camera/ID0402_Nov.28/15',
'PHASE3_HH02_T2_eButton-402_Mother/eButton_Data/Camera/ID0402_Nov.28/16',
'PHASE3_HH02_T2_eButton-402_Mother/eButton_Data/Camera/ID0402_Nov.28/17',
'PHASE3_HH02_T2_eButton-402_Mother/eButton_Data/Camera/ID0402_Nov.28/18',
'PHASE3_HH02_T2_eButton-411_Adolescent_child/eButton_Data/Camera/ID0411_Nov.28/10',
'PHASE3_HH02_T2_eButton-411_Adolescent_child/eButton_Data/Camera/ID0411_Nov.28/13',
'PHASE3_HH02_T2_eButton-411_Adolescent_child/eButton_Data/Camera/ID0411_Nov.28/15',
'PHASE3_HH02_T2_eButton-411_Adolescent_child/eButton_Data/Camera/ID0411_Nov.28/16',
'PHASE3_HH02_T2_eButton-411_Adolescent_child/eButton_Data/Camera/ID0411_Nov.28/17',
'PHASE3_HH02_T2_eButton-411_Adolescent_child/eButton_Data/Camera/ID0411_Nov.28/18',
'PHASE3_HH02_T4-eButton-411_Mother/eButton_Data/Camera/ID0411_Dec.02/7',
'PHASE3_HH02_T4-eButton-411_Mother/eButton_Data/Camera/ID0411_Dec.02/8',
'PHASE3_HH02_T4-eButton-411_Mother/eButton_Data/Camera/ID0411_Dec.02/9',
'PHASE3_HH02_T4-eButton-411_Mother/eButton_Data/Camera/ID0411_Dec.02/10',
'PHASE3_HH02_T4-eButton-411_Mother/eButton_Data/Camera/ID0411_Dec.02/11',
'PHASE3_HH02_T4-eButton-411_Mother/eButton_Data/Camera/ID0411_Dec.02/12',
'PHASE3_HH02_T4-eButton-411_Mother/eButton_Data/Camera/ID0411_Dec.02/13',
'PHASE3_HH02_T4-eButton-411_Mother/eButton_Data/Camera/ID0411_Dec.02/14',
'PHASE3_HH02_T4-eButton-411_Mother/eButton_Data/Camera/ID0411_Dec.02/15',
'PHASE3_HH02_T4-eButton-411_Mother/eButton_Data/Camera/ID0411_Dec.02/16',
# new data
'PHASE3_HH03_eButton-402_Father/eButton_Data/Camera/ID0402_Nov.30/9',
'PHASE3_HH03_eButton-402_Father/eButton_Data/Camera/ID0402_Nov.30/10',
'PHASE3_HH03_eButton-402_Father/eButton_Data/Camera/ID0402_Nov.30/11',
'PHASE3_HH03_eButton-402_Father/eButton_Data/Camera/ID0402_Nov.30/12',
'PHASE3_HH03_eButton-402_Father/eButton_Data/Camera/ID0402_Nov.30/13',
'PHASE3_HH03_eButton-402_Father/eButton_Data/Camera/ID0402_Nov.30/14',
'PHASE3_HH03_eButton-402_Father/eButton_Data/Camera/ID0402_Nov.30/15',
'PHASE3_HH03_eButton-402_Father/eButton_Data/Camera/ID0402_Nov.30/16',
'PHASE3_HH03_eButton-402_Father/eButton_Data/Camera/ID0402_Nov.30/17',
'PHASE3_HH03_eButton-411_Mother/eButton_Data/Camera/ID0411_Nov.30/8',
'PHASE3_HH03_eButton-411_Mother/eButton_Data/Camera/ID0411_Nov.30/9',
'PHASE3_HH03_eButton-411_Mother/eButton_Data/Camera/ID0411_Nov.30/10',
'PHASE3_HH03_eButton-411_Mother/eButton_Data/Camera/ID0411_Nov.30/13',
'PHASE3_HH03_eButton-411_Mother/eButton_Data/Camera/ID0411_Nov.30/14',
'PHASE3_HH03_eButton-411_Mother/eButton_Data/Camera/ID0411_Nov.30/15',
'PHASE3_HH03_eButton-411_Mother/eButton_Data/Camera/ID0411_Nov.30/16',
'PHASE3_HH03_eButton-411_Mother/eButton_Data/Camera/ID0411_Nov.30/17',
'PHASE3_HH03_T4_eBUTTON_402-ADOLESCENT_BOY/eButton_Data/Camera/ID0402_Dec.03/8',
'PHASE3_HH03_T4_eBUTTON_402-ADOLESCENT_BOY/eButton_Data/Camera/ID0402_Dec.03/9',
'PHASE3_HH03_T4_eBUTTON_402-ADOLESCENT_BOY/eButton_Data/Camera/ID0402_Dec.03/10',
'PHASE3_HH03_T4_eBUTTON_402-ADOLESCENT_BOY/eButton_Data/Camera/ID0402_Dec.03/11',
'PHASE3_HH03_T4_eBUTTON_402-ADOLESCENT_BOY/eButton_Data/Camera/ID0402_Dec.03/12',
'PHASE3_HH03_T4_eBUTTON_402-ADOLESCENT_BOY/eButton_Data/Camera/ID0402_Dec.03/13',
'PHASE3_HH03_T4_eBUTTON_402-ADOLESCENT_BOY/eButton_Data/Camera/ID0402_Dec.03/14',
'PHASE3_HH03_T4_eBUTTON_402-ADOLESCENT_BOY/eButton_Data/Camera/ID0402_Dec.03/15',
'PHASE3_HH03_T4_eBUTTON_402-ADOLESCENT_BOY/eButton_Data/Camera/ID0402_Dec.03/16',
'PHASE3_HH05_eButton-402_Father/eButton_Data/Camera/ID0402_Dec.05/7',
'PHASE3_HH05_eButton-402_Father/eButton_Data/Camera/ID0402_Dec.05/8',
'PHASE3_HH05_eButton-402_Father/eButton_Data/Camera/ID0402_Dec.05/9',
'PHASE3_HH05_eButton-402_Father/eButton_Data/Camera/ID0402_Dec.05/10',
'PHASE3_HH05_eButton-402_Father/eButton_Data/Camera/ID0402_Dec.05/11',
'PHASE3_HH05_eButton-402_Father/eButton_Data/Camera/ID0402_Dec.05/12',
'PHASE3_HH05_eButton-402_Father/eButton_Data/Camera/ID0402_Dec.05/13',
'PHASE3_HH05_eButton-402_Father/eButton_Data/Camera/ID0402_Dec.05/14',
]
from shutil import copyfile
import time
def construct_vector(folder_path):
label_file_name = "label.csv"
clarify_result_name = "clarify_result.csv"
label_filepath = os.path.join(folder_path, label_file_name)
clarify_result_filepath = os.path.join(folder_path, clarify_result_name)
if not os.path.exists(label_filepath) and not os.path.exists(
clarify_result_filepath):
print('no label file and clarify result file')
vector_x, vector_y, vector_time = [], [], []
label_list = []
clarify_list = []
with open(label_filepath) as f:
label_reader = csv.reader(f, delimiter=',')
for row in label_reader:
label_list.append(row)
with open(clarify_result_filepath) as f:
clarify_reader = csv.reader(f, delimiter=',')
for row in clarify_reader:
clarify_list.append(row)
for i in range(len(label_list)):
for j in range(len(label_list[i])):
label_list[i][j] = label_list[i][j].strip()
for i in range(len(clarify_list)):
for j in range(len(clarify_list[i])):
clarify_list[i][j] = clarify_list[i][j].strip()
food_name_list = []
no_food_name_list = []
food_rectify = []
with open("./food_rectify.csv") as f:
for line in f:
food_rectify.append(line.strip()+'.jpg')
for i in clarify_list:
for j in label_list:
if os.path.basename(i[0]) in j:
vector_time.append(j[0])
print(j[1])
tmp_with_name = [j[1]]
tmp_with_name += i[1:]
if tmp_with_name[0] in food_rectify:
vector_y.append(1)
# vector_x.append(i[1:])
vector_x.append(tmp_with_name)
food_name_list.append(j[1])
else:
if int(j[2]) >= 3: # 3 and 4 recognized as food
vector_y.append(1)
# vector_x.append(i[1:])
vector_x.append(tmp_with_name)
food_name_list.append(j[1])
else:
vector_y.append(0)
# vector_x.append(i[1:])
vector_x.append(tmp_with_name)
no_food_name_list.append(j[1])
t = time.time()
for root, dirs, files in os.walk('./', topdown=False):
for name in files:
if name in food_name_list:
src = os.path.join(root,name)
dst = os.path.join('../food_detection_data/food', name)
# if os.path.isfile(dst):
# dst = os.path.join('./food/' , str(int(t)) + name)
copyfile(src,dst)
print(src)
print(dst)
if name in no_food_name_list:
src = os.path.join(root,name)
dst = os.path.join('../food_detection_data/no_food', name)
# if os.path.isfile(dst):
# dst = os.path.join('./no_food/' ,str(int(t)) + name)
print(src)
print(dst)
copyfile(src,dst)
return vector_x, vector_y, vector_time
def construct_food_no_food(folder_name):
vector_x, vector_y, _ = construct_vector(folder_name)
# print(_)
food_csv = 'food.csv'
no_food_csv = 'no_food.csv'
food_file = open(food_csv, 'a')
no_food_file = open(no_food_csv, 'a')
for i in range(len(vector_y)):
if vector_y[i] == 1:
food_file.write(','.join(vector_x[i]))
food_file.write('\n')
else:
no_food_file.write(','.join(vector_x[i]))
no_food_file.write('\n')
food_file.close()
no_food_file.close()
if __name__ == '__main__':
section = [10, 10, 10, 6, 10, 9, 8, 9, 8]
# for i in range(10):
# vector_x, vector_y, _ = construct_vector(folder_list[i])
# tmp_vector_y = [str(i) for i in vector_y]
# print(' '.join((tmp_vector_y)))
# plt.scatter(range(len(vector_y)), vector_y, s=0.5)
# plt.show()
# for i in range(0, 5):
# vector_x, vector_y, vector_time = construct_vector(folder_list[i])
# vector_y = list(map(str, vector_y))
# print(' '.join(vector_y))
# second = [i for i in range(40)] + [i for i in range(36,46)]
# print(second)
# for i in second:
for i in range(0, sum(section)):
construct_food_no_food(folder_list[i])

31
get_FN_FP.py Executable file
View File

@ -0,0 +1,31 @@
import shutil
import os
FP, FN = [], []
with open('FP.txt') as f:
for row in f:
FP.append(row.strip())
with open('FN.txt') as f:
for row in f:
FN.append(row.strip())
FP = list(set(FP))
FN = list(set(FN))
for root, dirs, files in os.walk('.'):
for f in files:
if f in FP:
src = os.path.join(root, f)
dst = './FP/' + f
if not os.path.isfile(dst):
shutil.copyfile(src, dst)
if f in FN:
src = os.path.join(root, f)
dst = os.path.join('./FN/', f)
if not os.path.isfile(dst):
shutil.copyfile(src, dst)
# print(os.path.join(root, name))
# shutil.copyfile(src, dst, *, follow_symlinks=True)

113
get_dataset.ipynb Normal file
View File

@ -0,0 +1,113 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import csv\n",
"from sklearn.utils import shuffle\n",
"food_raw_data, non_food_raw_data, food_rectify = [], [], []\n",
"food_data, non_food_data = [], []\n",
"\n",
"with open(\"food_rectify.csv\") as f:\n",
" reader = csv.reader(f)\n",
" for row in reader:\n",
" food_rectify.append(row)\n",
"\n",
"with open(\"food.csv\") as f:\n",
" reader = csv.reader(f)\n",
" for row in reader:\n",
" food_raw_data.append(row)\n",
" \n",
"with open(\"no_food.csv\") as f:\n",
" reader = csv.reader(f)\n",
" for row in reader:\n",
" non_food_raw_data.append(row)\n",
" \n",
"food_data = food_raw_data\n",
"\n",
"for i in non_food_raw_data:\n",
" if i[0] not in food_rectify:\n",
" non_food_data.append(i)\n",
" else:\n",
" food_data.append(i)\n",
"\n",
"food_data = shuffle(food_data)\n",
"non_food_data = shuffle(non_food_data)\n",
"\n",
"ratio = 0.75 \n",
"train_food_len = int(len(food_data) * ratio)\n",
"train_non_food_len = train_food_len\n",
"\n",
"test_food_len = len(food_data) - train_food_len\n",
"test_non_food_len = int(len(non_food_data) * (1 - ratio))\n",
"\n",
"\n",
"train_food = food_data[0:train_food_len]\n",
"test_food = food_data[train_food_len:train_food_len + test_food_len]\n",
"\n",
"train_non_food = non_food_data[0:train_non_food_len]\n",
"test_non_food = non_food_data[train_non_food_len:train_non_food_len + test_non_food_len]\n",
"\n",
"with open('train_food.csv', 'w') as f:\n",
" write = csv.writer(f)\n",
" write.writerows(train_food)\n",
" \n",
"with open('train_non_food.csv', 'w') as f:\n",
" write = csv.writer(f)\n",
" write.writerows(train_non_food )\n",
"\n",
"with open('test_food.csv', 'w') as f:\n",
" write = csv.writer(f)\n",
" write.writerows(test_food )\n",
"with open('test_non_food.csv', 'w') as f:\n",
" write = csv.writer(f)\n",
" write.writerows(test_non_food)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"a = [i for i in range(10)]\n",
"print(a)\n",
"print(a[0:4])\n",
"print(a[4:7])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"non_food_raw_data"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

728
svm3_nb.ipynb Normal file

File diff suppressed because one or more lines are too long

351
svm_nb_funcs.py Normal file
View File

@ -0,0 +1,351 @@
from sklearn import svm
import csv
from sklearn.utils import shuffle
from sklearn.metrics import classification_report
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LogisticRegression
import numpy as np
import matplotlib.pyplot as plt
food_file_path, non_food_file_path = 'food.csv', 'no_food.csv'
# food_file_path2, non_food_file_path2 = 'food2.csv', 'no_food2.csv'
food_raw_data, non_food_raw_data = [], []
# food_raw_data2, non_food_raw_data2 = [], []
train_raw_food, train_raw_non_food = [], []
test_raw_food, test_raw_non_food = [], []
train_vector_x, train_vector_y, train_vector_num = [], [], []
test_vector_x, test_vector_y = [], []
useful_tag_list, useful_dict = [], {}
correlation_dict = {}
p_food = 0
def get_raw_data():
global food_raw_data, non_food_raw_data
with open(food_file_path) as f:
csv_reader = csv.reader(f)
for row in csv_reader:
food_raw_data.append(row)
with open(non_food_file_path) as f:
csv_reader = csv.reader(f)
for row in csv_reader:
non_food_raw_data.append(row)
# with open(food_file_path2) as f:
# csv_reader = csv.reader(f)
# for row in csv_reader:
# food_raw_data2.append(row)
# with open(non_food_file_path2) as f:
# csv_reader = csv.reader(f)
# for row in csv_reader:
# non_food_raw_data2.append(row)
def shuffle_raw_data():
global food_raw_data, non_food_raw_data
# non_food_raw_data = non_food_raw_data[:15000]
# non_food_raw_data = non_food_raw_data[:len(food_raw_data)]
food_raw_data = shuffle(food_raw_data)
non_food_raw_data = shuffle(non_food_raw_data)
# non_food_raw_data = non_food_raw_data[:15000]
non_food_raw_data = non_food_raw_data[:len(food_raw_data)]
# non_food_raw_data = non_food_raw_data[00000]
def div_train_test_raw_data(ratio=0.75):
global food_raw_data, non_food_raw_data, train_raw_food, \
train_raw_non_food, test_raw_food, test_raw_non_food, \
food_raw_data2, non_food_raw_data2
# remove some non_food_raw_data
# non_food_raw_data = non_food_raw_data[:10000]
train_food_len = int(len(food_raw_data) * ratio)
train_non_food_len = int(len(non_food_raw_data) * ratio)
train_raw_food = food_raw_data[0:train_food_len]
train_raw_non_food = non_food_raw_data[0:train_non_food_len]
test_raw_food = food_raw_data[train_food_len:]
test_raw_non_food = non_food_raw_data[train_non_food_len:]
# train_raw_food = food_raw_data
# test_raw_food = food_raw_data2
# train_raw_non_food = non_food_raw_data
# test_raw_non_food = non_food_raw_data2
def save_raw_data_train_test():
global food_raw_data, non_food_raw_data, train_raw_food, \
train_raw_non_food, test_raw_food, test_raw_non_food
with open('train_food.csv', 'w') as f:
write = csv.writer(f)
write.writerows(train_raw_food)
with open('train_non_food.csv', 'w') as f:
write = csv.writer(f)
write.writerows(train_raw_non_food )
with open('test_food.csv', 'w') as f:
write = csv.writer(f)
write.writerows(test_raw_food )
with open('test_non_food.csv', 'w') as f:
write = csv.writer(f)
write.writerows(test_raw_non_food)
for i in train_raw_food:
i = i[1:]
for i in train_raw_non_food:
i = i[1:]
for i in test_raw_food:
i = i[1:]
for i in test_raw_non_food:
i = i[1:]
print(len(train_raw_food))
def count_dict(raw_data, threshold=0.5):
counter_dict = {} # only collect from train data
for i in raw_data:
for j in range(0, len(i) - 1, 2):
tmp = str(i[j]).strip()
if float(i[j + 1]) > threshold:
if tmp not in counter_dict:
counter_dict[tmp] = 1
else:
counter_dict[tmp] += 1
else:
# if tmp not in counter_dict:
# counter_dict[tmp] = 0
pass
return counter_dict
def get_use_tag(use_all=False, threshold=0.5):
global useful_tag_list, food_raw_data, non_food_raw_data, useful_dict
useful_tag_list, useful_dict = [], {}
food_tag_dict = count_dict(train_raw_food)
non_food_tag_dict = count_dict(train_raw_non_food)
if use_all:
for i in non_food_tag_dict.keys():
if i not in food_tag_dict.keys():
food_tag_dict[i] = non_food_tag_dict[i]
else:
food_tag_dict[i] += non_food_tag_dict[i]
# food_tag_dict.update(non_food_tag_dict)
appear_times = 0
appear_list = []
for i in food_tag_dict.keys():
appear_times += food_tag_dict[i]
appear_list.append(food_tag_dict[i])
appear_list.sort(reverse=True)
useful_bound = int(appear_times * threshold)
bound = 0
pre_sum = 0
for i in range(len(appear_list)):
pre_sum += appear_list[i]
if pre_sum > useful_bound:
bound = appear_list[i]
break
for i in food_tag_dict.keys():
if food_tag_dict[i] > bound:
useful_tag_list.append(i)
counter = 0
for i in useful_tag_list:
useful_dict[i] = counter
counter += 1
def get_correlation():
global train_raw_food, correlation_dict
food_tag_dict = count_dict(train_raw_food)
merged_dict = count_dict(train_raw_non_food)
for i in food_tag_dict.keys():
if i not in merged_dict.keys():
merged_dict[i] = food_tag_dict[i]
else:
merged_dict[i] += food_tag_dict[i]
for i in food_tag_dict.keys():
if i not in correlation_dict.keys():
correlation_dict[i] = food_tag_dict[i] / len(food_raw_data)
# correlation_dict[i] = food_tag_dict[i] / merged_dict[i]
else:
print("error in get correlation function")
def construct_train_test_set():
global train_raw_food, train_raw_non_food, test_raw_food, \
test_raw_non_food, train_vector_x, train_vector_y, \
test_vector_x, test_vector_y, train_vector_num
train_vector_x, train_vector_y, train_vector_num = [], [], []
test_vector_x, test_vector_y = [], []
vector_x = []
vector_y = []
for i in train_raw_food:
tmp = [0 for i in range(len(useful_tag_list))]
for j in range(0, len(i) - 1, 2):
if i[j] in useful_dict.keys():
tmp[useful_dict[i[j]]] = float(
i[j + 1]) * correlation_dict[i[j]] + p_food * (1 - float(i[j + 1]))
else:
# TODO: should be changed to random probability
pass
vector_x.append(tmp)
vector_y.append("food")
train_vector_num.append(1)
for i in train_raw_non_food:
tmp = [0 for i in range(len(useful_tag_list))]
for j in range(0, len(i) - 1, 2):
if i[j] in useful_dict.keys():
tmp[useful_dict[i[j]]] = float(
i[j + 1]) * correlation_dict[i[j]] + p_food * (1 - float(i[j + 1]))
else:
# TODO: should be changed to random probability
pass
vector_x.append(tmp)
vector_y.append("no food")
train_vector_num.append(-1)
train_vector_x, train_vector_y = vector_x, vector_y
vector_x, vector_y = [], []
for i in test_raw_food:
tmp = [0 for i in range(len(useful_tag_list))]
for j in range(0, len(i) - 1, 2):
if i[j] in useful_dict.keys():
tmp[useful_dict[i[j]]] = float(
i[j + 1]) * correlation_dict[i[j]] + p_food * (1 - float(i[j + 1]))
else:
# TODO: should be changed to random probability
pass
vector_x.append(tmp)
vector_y.append("food")
for i in test_raw_non_food:
tmp = [0 for i in range(len(useful_tag_list))]
for j in range(0, len(i) - 1, 2):
if i[j] in useful_dict.keys():
tmp[useful_dict[i[j]]] = float(
i[j + 1]) * correlation_dict[i[j]] + p_food * (1 - float(i[j + 1]))
else:
# TODO: should be changed to random probability
pass
vector_x.append(tmp)
vector_y.append("no food")
test_vector_x, test_vector_y = vector_x, vector_y
def confision_matrix(ground_true, predict, print_result=False):
TP, FP, FN, TN = 0, 0, 0, 0
for i in range(len(ground_true)):
if ground_true[i] == "food" and predict[i] == "food":
TP += 1
elif ground_true[i] == "no food" and predict[i] == "food":
FP += 1
elif ground_true[i] == "food" and predict[i] == "no food":
FN += 1
elif ground_true[i] == "no food" and predict[i] == "no food":
TN += 1
TPR = TP / (TP + FN)
FPR = FP / (FP + TN)
if print_result:
print("TP: ", TP, "FN: ", FN, "TN: ", TN, "FP :", FP)
# print("Sensitivity = ", TP/(TP+FN), end=" ")
# print("Specificity = ", TN/(TN+FP))
# print("Precision = ", TP/(TP+FP), end=" ")
# print("Accuracy = ", (TP + TN)/(TP+TN+FN+FP))
return TPR, FPR
def clarifai_result():
global test_raw_food, test_raw_non_food
TPR_list = []
FPR_list = []
for k in range(10):
TP, FP, FN, TN = 0, 0, 0, 0
ratio = k / 10
# print(ratio)
for i in test_raw_food:
have = False
for j in range(len(i)):
if i[j] == "food" and float(i[j + 1]) > ratio:
have = True
if not have:
FN += 1
else:
TP += 1
for i in test_raw_non_food:
have = False
for j in range(len(i)):
if i[j] == "food" and float(i[j + 1]) > ratio:
have = True
if not have:
TN += 1
else:
FP += 1
TPR = TP / (TP + FN)
FPR = FP / (FP + TN)
TPR_list.append(TPR)
FPR_list.append(FPR)
if k == 9 or k == 8 or k == 7 or k ==6:
# if k == 7 or k == 6 or k == 5 or k == 4:
plt.scatter([FPR], [TPR], marker='o', c='green')
# print("TRP :", TPR)
# print("FPR :", FPR)
return TPR_list, FPR_list
#
# print("clarify result**********")
# print("TP: ", TP, "FN: ", FN, "TN: ", TN, "FP :", FP)
# print("Sensitivity = ", TP / (TP + FN), end=" ")
# print("Specificity = ", TN / (TN + FP))
# print("Precision = ", TP / (TP + FP), end=" ")
# print("Accuracy = ", (TP + TN) / (TP + TN + FN + FP))
# print("burden = ", (TP + FP) / (TP +TN+FN+FP))
# plt.scatter([1 - 0.789866667, 1 - 0.684, 1 - 0.55786, 1-0.4512], [0.584493042, 0.666003976, 0.753479125, 0.833664679], marker='o', c='green')
def get_p_food_before_balance():
# food_num_ori = 0
# with open("#food_ori.csv") as f:
# csv_reader = csv.reader(f)
# for row in csv_reader:
# food_num_ori += 1
# no_food_num_ori = 0
# with open("#no food_ori.csv") as f:
# csv_reader = csv.reader(f)
# for row in csv_reader:
# no_food_num_ori += 1
# p_food = food_num_ori / no_food_num_ori
# return p_food
# p_food = len(train_raw_food) / (len(train_raw_food) + len(train_raw_non_food))
# return p_food
pass
def init(use_all=True):
global p_food, train_raw_food, train_raw_non_food
get_raw_data()
shuffle_raw_data()
div_train_test_raw_data(0.75)
save_raw_data_train_test()
clarifai_result()
p_food = len(train_raw_food) / (len(train_raw_food) + len(train_raw_non_food))
get_correlation()
get_use_tag(use_all)
construct_train_test_set()